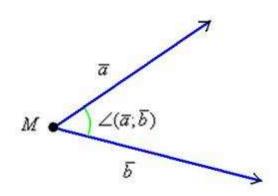
Тема урока: Скалярное произведение векторов



Скалярным произведением двух векторов \overline{a} и \overline{b} называется ЧИСЛО, равное произведению длин этих векторов на косинус угла между ними: $\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos \angle(\overline{a}; \overline{b})$

Пример 1

Найти скалярное произведение векторов \overline{a} и \overline{b} , если $|\overline{a}|=2$, $|\overline{b}|=5$, $\angle(\overline{a};\overline{b})=\frac{\pi}{6}$

Решение: Используем формулу $\overline{a}\,\overline{b} = |\overline{a}|\cdot |\overline{b}|\cdot \cos\angle(\overline{a}\,;\overline{b}\,)$. В данном случае: $\overline{a}\,\overline{b} = |\overline{a}|\cdot |\overline{b}|\cdot \cos\angle(\overline{a}\,;\overline{b}\,) = 2\cdot 5\cdot \cos\frac{\pi}{6} = 10\cdot \frac{\sqrt{3}}{2} = 5\sqrt{3}$

Угол между векторами может изменяться в пределах $0 \le \angle(\bar{a}; \bar{b}) \le \pi$, и при этом возможны следующие случаи:

- 1) Если **угол** между векторами **острый**: $0 < \angle(\overline{a}; \overline{b}) < \frac{\pi}{2}$ (от 0 до 90 градусов), то $\cos \angle(\overline{a}; \overline{b}) > 0$, и **скалярное произведение будет положительным**: $\overline{a}\overline{b} > 0$. Особый случай: если векторы *сонаправлены*, то угол между ними считается нулевым $\angle(\overline{a}; \overline{b}) = 0$, и скалярное произведение также будет положительным. Поскольку $\cos 0 = 1$, то формула упрощается: $\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}|$.
- 2) Если угол между векторами тупой: $\frac{\pi}{2} < \angle(\overline{a}; \overline{b}) < \pi$ (от 90 до 180 градусов), то $\cos \angle(\overline{a}; \overline{b}) < 0$, и, соответственно, **скалярное произведение отрицательно**: $\overline{a}\,\overline{b} < 0$. Особый случай: если векторы *направлены противоположно*, то угол между ними считается *развёрнутым*: $\angle(\overline{a}; \overline{b}) = \pi$ (180 градусов). Скалярное произведение тоже отрицательно, так как $\cos \pi = -1$

Справедливы и обратные утверждения:

1) Если $\bar{a}\bar{b}>0$, то угол между данными векторами острый. Как вариант, векторы сонаправлены.

2) Если $\overline{a}\,\overline{b}\,<0$, то угол между данными векторами тупой. Как вариант, векторы направлены противоположно.

Но особый интерес представляет третий случай:

3) Если **угол** между векторами **прямой**: $\angle(\overline{a}; \overline{b}) = \frac{\pi}{2}$ (90 градусов), то $\cos \frac{\pi}{2} = 0$ и **скалярное**

произведение равно нулю: $\overline{a}\overline{b}=0$. Обратное тоже верно: если $\overline{a}\overline{b}=0$, то $\angle(\overline{a};\overline{b})=\frac{\pi}{2}$.

Таким образом: Скалярное произведение двух векторов равно нулю тогда и только тогда, когда данные векторы ортогональны. Короткая математическая запись: $\overline{a}\,\overline{b}=0 \Leftrightarrow \overline{a}\perp \overline{b}$

Угол между векторами

Снова посмотрим на нашу формулу $\overline{a}\,\overline{b}=|\overline{a}|\cdot|\overline{b}|\cdot\cos\angle(\overline{a};\overline{b})$. По правилу пропорции сбросим длины векторов в знаменатель левой части:

$$\frac{\overline{a}\overline{b}}{|\overline{a}| \cdot |\overline{b}|} = \cos \angle (\overline{a}; \overline{b})$$

А части поменяем местами:

$$\cos \angle(\overline{a}; \overline{b}) = \frac{\overline{a}\overline{b}}{|\overline{a}| \cdot |\overline{b}|}$$

В чём смысл данной формулы? Если известны длины двух векторов и их скалярное произведение, то можно вычислить косинус угла между данными векторами, а, следовательно, и сам угол.

Скалярное произведение $\overline{a}\,\overline{b}\,$ – это число? Число. Длины векторов $|\overline{a}|,|\overline{b}|\,$ – числа? Числа. Значит,

дробь $|\overline{a}|\cdot |\overline{b}|$ тоже является некоторым числом X . А если известен косинус угла: $\cos\angle(\overline{a};\overline{b}) = X$, то с помощью обратной функции легко найти и сам угол: $\angle(\overline{a};\overline{b}) = \arccos X$.

Пример 1

Найти угол между векторами \overline{a} и \overline{b} , если известно, что $|\overline{a}|=4$, $|\overline{b}|=2\sqrt{2}$, $\overline{a}\overline{b}=8$.

Решение: Используем формулу:

$$\cos \angle(\overline{a}; \overline{b}) = \frac{\overline{a}\overline{b}}{|\overline{a}| \cdot |\overline{b}|} = \frac{8}{4 \cdot 2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}$$

Итак, если
$$\cos \angle(\overline{a}; \overline{b}) = \frac{\sqrt{2}}{2}$$
, то:

$$\angle(\overline{a}; \overline{b}) = \arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}$$

Значения обратных тригонометрических функций можно находить по <u>тригонометрической</u> <u>таблице</u>. Хотя случается это редко. В задачах аналитической геометрии значительно чаще

Ответ:
$$\angle(\overline{a}; \overline{b}) = \frac{\pi}{4}$$
 рад. = 45°

Скалярное произведение в координатах

Скалярное произведение векторов $\overline{v}(v_1;v_2)$ и $\overline{w}(w_1;w_2)$, заданных в ортонормированном базисе $\overline{(i};\overline{j})$, выражается формулой $\overline{v}\cdot\overline{w}=v_1w_1+v_2w_2$

Скалярное произведение векторов $\overline{v}(v_1; v_2; v_3), \overline{w}(w_1; w_2; w_3)$, заданных в ортонормированном базисе $(\overline{i}; \overline{j}; \overline{k})$, выражается формулой $\overline{v} \cdot \overline{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$

То есть, скалярное произведение равно сумме произведений соответствующих координат векторов.

Пример 2

Найти скалярное произведение векторов:

a)
$$\bar{a}(2;-5)$$
 $_{\mathbf{H}}$ $\bar{b}(-1;0)$

Решение:

$$\overline{a}\,\overline{b} = 2 \cdot (-1) + (-5) \cdot 0 = -2 + 0 = -2$$

Проверка векторов на ортогональность с помощью скалярного произведения

Векторы \overline{v} и \overline{w} ортогональны тогда и только тогда, когда $\overline{v} \cdot \overline{w} = 0$. В координатах данный факт запишется следующим образом:

$$\overline{v} \perp \overline{w} \Leftrightarrow v_1 w_1 + v_2 w_2 = 0$$
 (для векторов плоскости); $\overline{v} \perp \overline{w} \Leftrightarrow v_1 w_1 + v_2 w_2 + v_3 w_3 = 0$ (для векторов пространства).

Пример 3

Проверить ортогональность векторов: \bar{a} (1; 2; – 4) $_{\bf H}$ \bar{b} (6; – 1; 1)

Решение

Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение:

$$\overline{a}\,\overline{b} = 1 \cdot 6 + 2 \cdot (-1) + (-4) \cdot 1 = 6 - 2 - 4 = 0$$
, следовательно, $\overline{a} \perp \overline{b}$

Пример 4

При каком значении λ векторы $\overline{a}(3;\lambda;-2), \overline{b}(2-\lambda;-1;5)$ будут ортогональны?

Решение: По условию требуется найти **такое** значение параметра $^{\bar{\lambda}}$, чтобы данные векторы были ортогональны. Два вектора пространства $^{\bar{\nu}(\nu_1;\,\nu_2;\,\nu_3),\,\bar{w}(w_1;\,w_2;\,w_3)}$ ортогональны тогда и только тогда, когда $^{\nu_1w_1+\nu_2w_2+\nu_3w_3=0}$.

Дело за малым, составим уравнение:

$$\overline{a}\overline{b} = 0$$

 $3 \cdot (2 - \lambda) + \lambda \cdot (-1) + (-2) \cdot 5 = 0$

Раскрываем скобки и приводим подобные слагаемые:

$$6 - 3\lambda - \lambda - 10 = 0$$

$$-4\lambda - 4 = 0$$

Решаем простейшее линейное уравнение:

$$-4\lambda = 4$$

$$\lambda = -1$$

Ответ: при $\lambda = -1$

Пример 5

Найти скалярное произведение векторов $\overline{c} = \overline{a} - 4\overline{b}$, $\overline{d} = -2\overline{a} - \overline{b}$, если $\overline{a}(5,7)$, $\overline{b}(1,1)$

Решение:

Найдём вектор \bar{c} :

$$\overline{c} = \overline{a} - 4\overline{b} = (5, 7) - 4(1, 1) = (5, 7) - (4, 4) = (1, 3)$$

Найдём вектор \bar{d} :

$$\overline{d} = -2\overline{a} - \overline{b} = -2(5; 7) - (1; 1) = (-10; -14) - (1; 1) = (-11; -15)$$

Вычислим скалярное произведение:

$$\overline{c}\overline{d} = 1 \cdot (-11) + 3 \cdot (-15) = -11 - 45 = -56$$

Other: $\bar{c}\bar{d} = -56$

Что и говорить, иметь дело с координатами значительно приятнее.

Формула косинуса угла между векторами, которые заданы координатами

Теперь у нас есть полная информация, чтобы ранее выведенную формулу косинуса угла между

$$\cos \angle(\overline{\nu}; \overline{w}) = \frac{\overline{\nu} \cdot \overline{w}}{\left|\overline{\nu}\right| \cdot \left|\overline{w}\right|}$$
 выразить через координаты векторов $\overline{\nu}, \overline{w}$:

Косинус угла между векторами плоскости $\overline{v}(v_1; v_2)$ и $\overline{w}(w_1; w_2)$, заданными в ортонормированном базисе $(\bar{i}; \bar{j})$, выражается формулой:

$$\cos \angle (\overline{\nu}; \overline{w}) = \frac{\nu_1 w_1 + \nu_2 w_2}{\sqrt{\nu_1^2 + \nu_2^2} \cdot \sqrt{w_1^2 + w_2^2}}$$

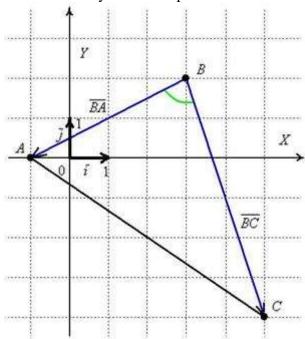
Косинус угла между векторами пространства $\overline{v}(v_1, v_2, v_3), \overline{w}(w_1, w_2, w_3)$, заданными в ортонормированном базисе $\overline{(\bar{i}, \bar{j}, \bar{k})}$, выражается формулой:

$$\cos \angle(\overline{\nu}; \, \overline{w}) = \frac{\nu_1 w_1 + \nu_2 w_2 + \nu_3 w_3}{\sqrt{\nu_1^2 + \nu_2^2 + \nu_3^2} \cdot \sqrt{w_1^2 + w_2^2 + w_3^2}}$$

Пример 6

Даны три вершины треугольника A(-1;0), B(3;2), C(5;-4) . Найти значение $\cos \angle ABC$ (угол при вершине B).

Решение: По условию чертёж выполнять не требуется, но всё-таки:



Требуемый угол $\angle ABC$ помечен зелёной дугой. Сразу вспоминаем школьное обозначение угла: $\angle ABC$ — особое внимание на **среднюю** букву B — это и есть нужная нам вершина угла. Для краткости можно было также записать просто $\angle B$.

Из чертежа совершенно очевидно, что угол $\angle ABC$ треугольника совпадает с углом между векторами \overline{BA} и \overline{BC} , иными словами: $\angle ABC = \angle (\overline{BA}; \overline{BC})$.

Проведённый анализ желательно научиться выполнять мысленно.

Найдём векторы:

$$\overline{BA}(-1-3; 0-2) = \overline{BA}(-4; -2)$$

$$\overline{BC}(5-3; -4-2) = \overline{BC}(2; -6)$$

Вычислим скалярное произведение:

$$\overline{BA} \cdot \overline{BC} = -4 \cdot 2 - 2 \cdot (-6) = -8 + 12 = 4$$

И длины векторов:

$$|\overline{BA}| = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$$

 $|\overline{BC}| = \sqrt{2^2 + (-6)^2} = \sqrt{4 + 36} = \sqrt{40} = 2\sqrt{10}$

Косинус угла:

$$\cos \angle (\overline{BA}; \overline{BC}) = \frac{\overline{BA} \cdot \overline{BC}}{\overline{|BA|} \cdot \overline{|BC|}} = \frac{4}{2\sqrt{5} \cdot 2\sqrt{10}} = \frac{1}{\sqrt{50}} = \frac{1}{5\sqrt{2}}$$

Можно сразу воспользоваться формулой :

$$\cos \angle (\overline{BA}; \overline{BC}) = \frac{\overline{BA} \cdot \overline{BC}}{|\overline{BA}| \cdot |\overline{BC}|} = \frac{-4 \cdot 2 - 2 \cdot (-6)}{\sqrt{(-4)^2 + (-2)^2} \cdot \sqrt{2^2 + (-6)^2}} = \frac{-8 + 12}{\sqrt{16 + 4} \cdot \sqrt{4 + 36}} = \frac{4}{\sqrt{20} \cdot \sqrt{40}} = \frac{4}{\sqrt{800}} = \frac{4}{20\sqrt{2}} = \frac{1}{5\sqrt{2}}$$

Домашнее задание:

- 1. Найти скалярное произведение векторов $\overline{a}\overline{b}$:
- a) a(3,4), b(-2,3)
- 6) a(-1,-3), b(0,3)
- 2. При каком значении λ скалярное произведение векторов $\overline{a}(2,\lambda), \overline{b}(2,-3)$ будет равно -2?
- 3. Найти скалярное произведение векторов $3\bar{c}_{-\mathbf{U}} \ 2\bar{c} + \bar{d}_{-\mathbf{C}} = \mathbf{C}(0; -3; 5), \bar{d}(-4; 1; 0)$
- 4. В пространстве задан треугольник координатами своих вершин $^{A_1(1;\ 1;\ 1),\ A_2(3;\ 0;\ 0),\ A_3(2;\ 3;\ 7)}$. Найти соs угола между сторонами A_1A_2 и A_1A_3

ВЫПОЛНЕННОЕ ЗАДАНИЕ СФОТОГРАФИРОВАТЬ И НАПРАВВИТЬ НА ПО ЭЛЕКТРОННОЙ ПОЧТЕ НА СЛЕДУЮЩИЙ АДРЕС: vm@yapk21.ru